A Self-Switchable Polymer Reactor for Controlled Catalytic Chemistry Processes with a Hyperbranched Structure
نویسندگان
چکیده
A self-switchable polymer reactor with a hyperbranched structure for controlled catalytic chemistry processes is reported. This polymer reactor was made of silver nanoparticles and a polymer carrier consisting of hyperbranched polyethylenimine and hydroxyethyl acrylate that behaved as thermally switchable domains. Below the transfer temperature, relatively strong catalytic reactivity was demonstrated due to the leading role of hydrophilic groups in the switchable domains, which opened access to the substrate for the packaged silver nanoparticles. In contrast, it showed weak catalysis at relatively high temperatures, reducing from the significantly increased hydrophobicity in the switchable domains. In this way, the polymer reactor displays controllable, tunable, catalytic activity based on this approach. This novel design opens up the opportunity to develop intelligent polymer reactors for controlled catalytic processes.
منابع مشابه
Preparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization
Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...
متن کاملToward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer.
To develop an intelligent sensor-effector functionality on the nanoscale, a pH-switchable, controlled nanoreactor based on amphiphilic copolymer membranes was built. The nanovesicles were equipped with bacterial transmembrane ompF pore proteins and the pH-sensitive enzyme acid phosphatase, resulting in a switchable substrate processing at pH 4-6.5. Ideal pH and substrate concentrations for the ...
متن کاملHyperbranched Polymer Integrated Membrane for the Removal of Arsenic(III) in Water
This work demonstrates the synthesis, characterization and application of a hyperbranched polyethyleneimine/polysulfone (HPEI/PSf) thin fi lm composite (TFC) membrane. The membrane was accessed via an interfacial polymerization of trimesoyl chloride and HPEI. The membrane samples were characterized by Fourier Transform Infrared-Attenuated Total Refl ectance (FTIR-ATR) s...
متن کاملStudying the Adsorption Behavior of a Disperse Dye on Polyethylene Terephthalate in Absence and Presence of a Nanostructured Hyperbranched Polymer
Dyeing properties of compounded polyethylene terephthalate fibers with a polyesteramide hyperbranched polymer were investigated in terms of their thermodynamic parameters, including standard affinity -Δμ⁰, enthalpy change ΔH⁰ and entropy change ΔS⁰. Results were then compared with corresponding properties of the virgin PET. The results showed that the isotherms were similar to that of virgin PE...
متن کاملPalladium nanoparticles immobilized on multifunctional hyperbranched polyglycerol-grafted magnetic nanoparticles as a sustainable and efficient catalyst for C-C coupling reactions
This study offers an exclusive class of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) that was functionalized with citric acid (MNP/HPG-CA) as a host immobilization of palladium nanoparticles. The MNP/HPG-CA/Pd catalyst was fully characterized using some different techniques such as thermogravimetric analysis (TGA), x-ray diffraction (XRD), transmission electron microsco...
متن کامل